Tesla adds Driver Monitoring System, DMS to Model 3 and Model Y cars with a cabin camera

By Nuno Cristovao

Tesla Autopilot has always required and will require full driver attention for the foreseeable future. Tesla enforced this by detecting whether torque was being applied to the steering wheel.

Tesla's DMS

Tesla has relied on this method since the introduction of Autopilot, but unfortunately there have been several flaws with it for years.

Since Tesla is looking for a certain amount of force to be applied to the steering wheel, sometimes the car can ask for the driver’s attention even when the driver is attentive and their hands are on the steering wheel. The interval that the car checks for active participation has changed over the years, but with it being somewhere around 30-60 seconds, it can sometimes become an annoyance to drivers.

The second reason that detecting torque on the steering wheel doesn’t work well as a driver monitoring system is that it is easily defeated. There have been numerous devices that mimic the force of hands on the steering wheel and let's face it, it doesn’t lead to anything good for the driver or Tesla.

Tesla's Driver Monitoring System

Yesterday we saw the first vehicles to introduce a true driver monitoring system. For vehicles with a cabin camera, which include all Model 3 and Model Y vehicles, Tesla will be able to turn on their camera-based driver monitoring system (DMS). It appears that the feature is currently limited to the US and only for radar-less cars, but we expect this to change in the future. The release notes for 2021.4.15.11 state that:

Update: With the release of update 2021.32.5, Tesla has started to roll out driver monitoring to vehicles with radar as well. It is also expanding the feature to outside of the US.

The cabin camera above your rearview mirror can now detect and alert driver inattentiveness while Autopilot is engaged. Camera data does not leave the car itself, which means the system cannot save or transmit information unless data shared is enabled. To change your data settings, tap Controls > Safety & Security > Data Sharing on your car's touchscreen.

Much like Tesla implements FSD, the cabin camera will be recording and analyzing the video stream and attempting to detect several objects and driver attributes. Each attribute then gets a probability assigned to it. If the threshold is high enough for any given attribute that Tesla deems as the driver not paying attention, then the car can take additional action from there such as turn off Autopilot, pull over or ask the driver to pay attention.

According to GreenTheOnly on Twitter, the camera will be detecting whether the driver is looking down or to the side and tracking eye movement and detecting other things as well such as whether the driver is wearing sunglasses and how well the camera can see. Although Tesla is looking for a variety of distractions, it looks like they are only currently triggering alerts when the driver is on their phone and not looking at the road.

The first cars have started rolling out with this feature enabled and it hasn't replaced Tesla’s steering wheel torque detection, but is providing another layer of protection. We hope as Tesla expands its capability in the future it may one day replace having your hands on the Tesla wheel completely.

Tesla has also recently rolled out detecting whether there is a driver in the driver’s seat during the use of Autopilot. It’s possible Tesla will create an algorithm with all of these attributes and ultimately decide whether the driver is paying attention or not. This could greatly reduce the amount of times the driver is asked to pay attention when they already are and also increase safety by reminding us when we’re not.

Tesla’s LFP Factory in North America Almost Complete — More LFP Vehicles Could Follow

By Karan Singh
Not a Tesla App

In a new video posted to X, Tesla is showing the progress of its first Lithium Iron Phosphate (LFP) cell manufacturing factory in North America. The facility, located in Sparks, Nevada, will be used to produce LFP battery cells for Megapacks and Powerwall.

However, the implications of this new factory extend beyond Tesla Energy. By on-shoring the production of these cost-effective batteries, Tesla is not only securing its energy supply chain but also opening the door to potentially reintroducing LFP-based vehicles in North America.

Megapack First

The immediate beneficiary of the new Nevada LFP facility is Tesla’s Energy division. LFP chemistry is ideal for stationary storage products like Megapack and Powerwall. It offers a very long life cycle, is extremely thermally stable and safe, and is significantly cheaper to produce than nickel-based batteries, partly because it contains no cobalt.

Until now, Tesla has relied on suppliers like CATL in China for these cells. A dedicated, domestic supply will enable Tesla to dramatically ramp up Megapack production to meet North America’s increasing demand for grid-scale energy. On the other hand, Megafactory Shanghai continues to utilize CATL’s LFP batteries and will support the rest of the world. 

Tesla first revealed that they were planning to onshore LFP production in North America at the Q1 2025 Earnings Call, which will help them avoid costs, innovate in new technology, and insulate themselves from geopolitical supply chain risks.

A Potential Return for LFP Vehicles?

Another exciting application for Tesla is what this new factory means for Tesla’s budget-oriented lineup. For years, Tesla has been constrained in its ability to offer LFP-based vehicles in North America. While LFP packs are used in other markets for specific standard-range RWD vehicles, tariffs on important Chinese cells made it difficult to import these cells for use in North America.

With a domestic supply of LFP cells produced in Nevada, this tariff-related barrier will be mostly eliminated, pending the sourcing of lithium from a North American site. This is likely to lead to the reintroduction of LFP-based vehicles to the North American market, possibly in late 2026 or 2027.

An American-made LFP pack could lead to a more affordable base Model 3 or Model Y, or potentially help Tesla cut costs on the next-generation Affordable Model even further. This helps to give customers a lower-cost entry point without sacrificing a lot of range, and with the added benefit of being able to regularly charge to 100%.

Mega Nevada

With Mega Nevada now progressing well, Tesla is in an excellent position to continue iterating on its vertical integration and scaling Megapack and Powerwall—two of Tesla’s fastest-growing businesses—further. There are tons of benefits for consumers in the future as Tesla continues down this path, with more affordable Powerwalls for the home, cheaper electricity prices thanks to grid-forming Megapacks, and cheaper LFP vehicles.

Tesla Grok App: First Look at Its Interface and Features

By Karan Singh
@greentheonly on X

The next major upgrade for Tesla’s in-car experience is pretty much already here - just hiding beneath the surface, awaiting the flick of a switch. According to new details uncovered by Tesla hacker Greentheonly, a fully functional version of the Grok conversational AI assistant is already present in recent firmware builds, just waiting for Tesla to activate it.

The feature, which is currently behind a server-side switch, could be enabled at any time by Tesla for vehicles running update 2025.20 and newer. The findings provide a better picture of what we already learned from Green’s breakdown on Grok last month.

Grok’s Requirements

@greentheonly on X

According to what Green determined from the latest software builds, the foundation for Grok was laid with update 2025.14, with more abilities and functionality added in 2025.20 to flesh it out. He also determined exactly which vehicles will be receiving Grok.

In terms of hardware, any vehicle with a Ryzen-based infotainment computer will receive Grok. This means that vehicles with the older Intel Atom processor will not be supported, at least initially. The underlying Autopilot hardware is not a factor, as Grok’s processing is not done in-vehicle.

Grok will also require premium connectivity or a Wi-Fi connection for the vehicle. At this point, we’re not sure whether Grok in your Tesla will also require you to sign up for SuperGrok, X Premium, or X Premium+, but Tesla is requiring you to sign into your Grok account. It’s just not clear whether the free version of Grok will work, or if you’ll need the premium version.

Grok User Experience

@greentheonly on X

Green also revealed the user interface for Grok for the first time. You’ll find many of the same features from the Grok app, but surprisingly, it looks like it’ll have a dark UI, even if you’re using light mode in your vehicle.

It appears that there will be a Grok app, likely for settings. However, Grok will largely operate in a modal, similar to voice commands, which are displayed near the bottom left corner of the screen.

There’s an on-screen microphone button, as well as drop-down menus for the voice and type of assistant you’d like to use. 

Similar to the Grok app currently on mobile devices, you’ll be able to select from a set of voices and then define their personality. The available voices for now are the standard Ara (Upbeat Female), Rex (Calm Male), and Gork (Lazy Male).

There’s also a settings button, which, when expanded, allows you to enable or disable NSFW mode (including swearing and adult topics), as well as a Kids Mode, which will tone Grok down to be suitable for when kids are in the car.

@greentheonly on X

How Grok Will Work (Button / Wake Word)

Users will be able to activate Grok by pressing a button, likely the same one that activates voice commands today. Grok will then remain enabled for the duration of your conversation, allowing you to go back and forth, asking and answering questions. To end your conversation, you’ll press the mic button again.

While it doesn’t appear to use a wake word yet, Green says that some code refers to a wake word, so it’s possible that this could be an option Tesla plans to activate in the future.

Replacing Voice Commands

The most significant implication of Grok’s future integration is in its potential to fully replace the existing and relatively rigid voice command system. Green notes that internally, this feature is part of the car assist module, and that eventually, the plan is for Grok to take over car control functions.

Unlike the current system, which requires specific phrases, a true conversational AI like Grok can understand natural language. This will enable more intuitive requests, completely changing how drivers interact with their car.

Language Support

@Greentheonly/X

Grok will also launch with multi-language support, similar to its current abilities in the Grok app. Green says that it already appears to have support for English and Chinese and one or two other languages.

Release Date

Grok appears ready to go from a vehicle standpoint, but Green wasn’t able to actually test it out. While development appears to be nearly complete in the vehicle, Tesla and xAI may still be working on some server-side changes to better integrate with the vehicle. If they plan for Grok to replace voice commands on day one, then it’ll need to be trained and be able to execute a variety of vehicle commands.

It’s possible Tesla is actively testing Grok or adding server-side changes to replace voice commands. However, it looks like vehicle development is nearly complete and Grok could launch as soon as the next major Tesla update, which is expected to be update 2025.24.

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

More Tesla News

Tesla Videos

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

Subscribe

Subscribe to our weekly newsletter