For the first time, you have a choice of battery for your new Tesla. Not battery size, you've always had that choice. Now you have a choice of which chemical elements you want. Here are some thoughts about how you can choose intelligently. It all depends on your financial situation, your plans for long-distance travel, and the geography of your area.
There's a delay in delivery times for the Model 3 SR+. This is August 2021. Delivery dates are some time in 2022. If you're buying one of the more expensive models or one of the bigger battery sizes, you can take delivery sooner, but the Model 3 SR+ might be the one you want. It's the one I bought. I knew that road trips would take a bit longer with the shorter-range battery since I'd have to pull off the road to charge more often. So far, I haven't had the opportunity to take a multi-day road trip. There's a pandemic after all. But I knew that would eventually become an issue. I really like road trips. But I have to say, even when I took lots of road trips, most of my driving was local.
Had I opted for the long-range Model 3, I'd have paid an extra ten thousand dollars in order to get 90 miles of extra range. That extra ninety miles of range would come into play only 30 or 40 days each year, and the time it would save me would be about an hour each day of a multi-day road trip. It didn't make financial sense.
Now that Tesla is experiencing the same production delays as are all the other auto manufacturers, they're giving their shorter delivery dates to buyers of the more expensive, read higher profit, models. But they're making an exception and giving shorter delivery dates if you buy a Tesla with an LFP battery rather than an NCA battery.
So what's the difference? Both batteries are actually lithium-ion batteries. They both use lithium. So that's not a difference. But the NCA battery uses nickel, cobalt, and aluminum in addition to lithium. The LFP battery uses Iron and Phosphate (phosphorus combined with oxygen) in addition to lithium. The main differences for you to consider are that the LFP battery has a slightly shorter range, 253 miles, as opposed to the NCA battery, 263 miles. But that slight difference in range is deceptive. The NCA battery probably shouldn't be charged to 100%. Fully charging the battery causes damage to the battery making it likely to deteriorate over the years of ownership. It's perfectly fine to charge the LFP battery to 100% so the driver experience is pretty much the same except for a couple caveats.
The LFP battery is heavier. That's why the range is slightly lower on the ordinary battery test cycle. The extra weight causes extra rolling resistance. That's why the range is reduced. There's probably also some extra wear on the tires. The problems of extra weight and extra rolling resistance are probably not all that bothersome for most drivers.
But, if you live in an area where there are lots of hills so that you're changing your elevation every time you drive, you're going to notice a much more pronounced decrease in range with the heavier LFP battery. You can experience the difference more intimately by getting a wagon or a wheelbarrow. Roll it around on level ground. Then put a heavy object in it and roll it around some more. You'll notice a bit more rolling resistance, but you'll be able to deal with the extra rolling resistance easily.
Now do that same experiment on a hill. Pull the wagon or push the wheelbarrow up the hill empty. No problem, right? Then put in the heavy object and go up the hill again. Big difference. Your car feels the same way. You'll get a bit of extra regenerative braking going down the hill with the heavier battery, but it won't be enough to make up the difference. The second law of thermodynamics causes that. That pesky high school physics topic, entropy, strikes again.
LFP batteries charge more slowly in cold weather than NCA batteries and their range decreases somewhat more than NCA batteries in cold weather. Keep in mind that both NCA and LFP do worse in cold weather. It's just that LFP batteries get more of a cold weather effect than NCA batteries. When you're on a road trip and navigating to a Supercharger, your car will prewarm its batteries. That will alleviate the slower charging problem to some extent, but you'll be at the Supercharger six or seven minutes longer in winter with LFP batteries. That will be a problem if you plan to use your car in such a way as to need to do lots of cold weather supercharging. It won't matter at all if you're just going to charge your car overnight in your garage.
So flatlanders will be fine with the LFP battery. If you live in a hilly area, you may want to wait for the NCA-equipped Tesla Model 3 SR+. But remember, the lower range problem is only a problem for people planning to do lots of mountain driving. In that case, you actually ought to invest the extra $10K in the long range Model 3.
One last issue about the LFP battery. Remember, earlier in this article, I mentioned that you shouldn't fill the NCA battery up to 100% charge, but you should fill the LFP battery up to 100%? That's true at home, but it's not true on road trips. On road trips, you want to minimize the amount of time you're stopped. The way to do that is to never charge the battery to 100% no matter which kind of battery you have. When you plug your car in at a modern high voltage supercharger, you'll see your car adding four to five hundred miles per hour of connection. That doesn't mean you'll be up to 100% in a half hour. You won't. As the battery gets charged, the rate of charge drops significantly for both the LFP and the NCA batteries. Once you get above 80%, the battery charges very slowly. So figure out how much charge you need to get you to the next place you're going to charge up and give yourself enough charge to get you there with a twenty or thirty mile cushion. Charging your battery more than that is a waste of time. Your travel time.
Tesla's Battery Day
Subscribe
Subscribe to our newsletter to stay up to date on the latest Tesla news, upcoming features and software updates.
For Tesla owners with vehicles equipped with Hardware 3 (HW3)—once hailed as the key to unlocking autonomy, Robotaxi functionality, and unsupervised Full Self-Driving—the landscape is quickly changing. FSD updates were previously available for HW3 and HW4, but now, HW3 is often excluded from newer FSD updates due to compute and memory constraints. While HW3 vehicles still run a capable version of FSD, they are considerably less smooth than HW4 vehicles.
This has many HW3 owners curious about Tesla’s plans to upgrade these older vehicles, which were once promised to be capable of true autonomy. Let’s take a look at everything Tesla has said and what we should expect.
The HW3 Predicament
Introduced around April 2019, HW3 was a big leap over HW 2.5 and HW 2, with Tesla billing it as the computer that would eventually deliver true self-driving. For a long time, it powered the FSD Beta program. However, as FSD Supervised becomes more complex and data-intensive, particularly with neural networks moving towards an end-to-end AI approach, questions about HW3’s long-term lifespan have grown.
While HW3 vehicles are still receiving FSD updates, with the latest version, V12.6, launching in January 2025, the latest improvements in FSD v13 appear to be stretching even the more modern capabilities of AI4 hardware. This has understandably led to concerns that HW3 will not support Robotaxis and true autonomy.
Tesla’s HW3 Upgrade Promise
To address these concerns, Elon Musk has made increasingly definitive statements. After initially suggesting an upgrade would happen "if needed," he confirmed at the Q4 2025 Earnings Call that Tesla will upgrade HW3 computers for customers who purchased the FSD package.
Musk stated, “That's going to be painful and difficult, but we'll get it done. Now I'm kinda glad that not that many people bought the FSD package, haha.”
While Musk initially stated that Tesla would offer a hardware upgrade if needed, he gave more details this time, stating that the complimentary upgrade would be available for those who purchased the FSD package. Subscribers and non-subscribers will likely need to pay a fee similar to the HW 2 / HW 2.5 upgrade. Interestingly, Tesla was later sued for charging a fee to upgrade to HW3 and had to waive the cost.
When Will the HW3 Upgrade Be Available?
Despite Musk’s confirmation of an upgrade, Tesla hasn’t provided any timelines or estimates for HW3 retrofits. The prevailing logic, and one that aligns with Tesla’s approach to engineering challenges, is that the company is unlikely to initiate a mass upgrade program until FSD is significantly closer to being “solved,” meaning it has achieved true, unsupervised autonomy where a driver is not needed.
Until Tesla knows the final, stable computing power and architectural requirements needed for that level of autonomy, rolling out an interim upgrade wouldn’t make sense. It would risk needing yet another upgrade down the line. Therefore, HW3 owners are in a waiting game - will they wait it out, or will they take one of Tesla’s FSD transfer deals?
What to Expect With the HW3 Upgrade
One thing is clear. The upgrade will not be a simple swap to the current generation of HW4 hardware. AI4, as found in newer Tesla vehicles, has different physical dimensions, power and cooling requirements, and connector configurations that make it incompatible as a direct retrofit into HW3-designed vehicles. It’d require a lot of effort and cost to adapt HW4 for HW3 vehicles.
This means Tesla will have to develop another custom-designed retrofit FSD computer specifically for HW3 replacements. This computer must fit within an existing and defined physical space and operate within the power and cooling budget of older vehicles.
Speculation naturally turns to Tesla’s next-generation FSD hardware, HW5 or AI5. Elon previously indicated that AI5 would appear in new vehicles near the end of 2025, initially citing a timeframe of 12-18 months back in mid-2023. However, it now looks like it’ll ship sometime in the first half of 2026.
Potentially, a variant of this new AI5 computer, perhaps a more power-efficient or underclocked version, could be engineered to form the basis of the HW3 retrofit solution. This is plausible, as newer chip architectures often bring considerably greater efficiency, potentially allowing a more powerful new design to operate within HW3’s constraints.
What About HW4 and HW5?
The current-generation FSD computer, HW4, is already facing some constraints with the latest FSD v13 updates. This means buyers and owners of AI4 vehicles are also starting to have this question creep into the back of their heads… “What about my vehicle?”
Based on Tesla’s official statements on AI5, it is poised to be a powerhouse of an upgrade. That means up to 10 times the processing capability of AI4. This is an immense increase in processing power, and over time, Tesla will likely use every bit of it to make FSD handle as many edge cases as possible. While AI4’s computing power was a modest increase from HW3, the leap from AI4 to AI5 is expected to be significantly larger.
Tesla’s executive team has stated that the existing cameras on HW3-equipped vehicles are “capable” and that the upgrade will be focused on the FSD computer. While the AI4 cameras offer a much higher resolution than HW3, Tesla says they’re not needed. This appears to contradict what Tesla is doing as of FSD v13.2. In that update, Tesla introduced processing FSD camera feeds at full resolution, suggesting that there is some advantage to the higher-resolution cameras.
Musk also stated that cameras would not be upgraded in HW3 vehicles.
As we’ve previously covered, the newer HW4 cameras offer several advantages over the HW3 camera generation, which include:
Higher Resolution: The AI4 cameras feature 5 megapixels, compared to the 1.2 megapixels on HW3 cameras, which allows the vehicle to see things further away and in sharper detail.
Improved Dynamic Range and Low-Light Performance: The improved dynamic range allows the system to see more clearly in low-light conditions, such as during sunrise or sunset, or at night.
Wider Field of View: The rear camera on AI4 features a significantly larger field of view, providing greater awareness of the vehicle's surroundings.
It's known that AI4 processes camera data at these higher resolutions, which undoubtedly contributes to its increased performance in decision-making, object recognition (especially at a distance or for small details, such as text on signs), and overall FSD smoothness.
Therefore, while a new, more powerful retrofit computer for HW3 vehicles will bring substantial improvements, it will still be processing input from the older-generation cameras. Another technical challenge that Tesla will need to address is how to maximize FSD performance using the existing HW3 cameras.
Infotainment (MCU) Upgrade?
Most HW3-era vehicles are equipped with the older Intel Atom-based infotainment computer, known as MCU 2. Newer Teslas, as well as newer HW3 vehicles, use the considerably faster AMD Ryzen-based MCU 3. Given that Tesla sometimes packages the FSD computer and infotainment computer together, it wouldn’t be too surprising to see an MCU upgrade as part of an FSD computer retrofit.
While this would be a welcome improvement, providing a snappier user interface and better media capabilities, Tesla has not confirmed any such plans. The FSD computer and the MCU are technically separate systems, but Tesla usually bundles them together to save on costs. While Tesla has offered paid MCU upgrades in the past (e.g., from the older MCU 1 to MCU 2), there is currently no official upgrade path from MCU 2 to MCU 3.
It’s best to assume that the promised free FSD computer upgrade will not automatically include an infotainment system upgrade as well, but it’s certainly possible, given that Tesla usually bundles these together.
Playing the Waiting Game
For Tesla owners who purchased FSD with their HW3 vehicles, the commitment for a free hardware upgrade is on the record. However, the "when" and "what" remain tied to the challenge of achieving true, unsupervised autonomy. Once Tesla understands the compute power required to solve FSD, we’ll likely hear more about this hardware upgrade. Until then, we’ll have to hold on tight with FSD v12.6.
In just 8 months, Tesla has gone from breaking ground to delivering electrons at its most ambitious Supercharger project to date, just in time to be ready for the busy Fourth of July holiday weekend. Project Oasis, the world’s largest Supercharger site, is now partially open to customers for its first phase in Lost Hills, California.
What makes this remarkable is the speed of execution. In just eight months, Tesla has constructed a site that will eventually feature 168 stalls (84 stalls are now open), supported by 11 MW of solar power and 10 Megapacks of battery storage. That construction speed is pretty impressive, but what is even more impressive is how this new station operates and what it means for future Supercharging infrastructure.
Self-Sufficient Energy Oasis
Not a Tesla App
The first 84 stalls at Lost Hills are now open, and according to the Tesla Charging team, they are currently powered solely by the sun and operate off-grid.
This makes it more than just a new Supercharger site. It serves as a proof of concept for a new type of Supercharger. Unlike nearly every other charging site in the world, which draws power from local utilities, this station generates its own clean electricity from its massive solar array and stores it in its array of on-site Megapacks.
Self-sufficient charging stations are something completely different than what we see today. They are highly resilient since they’re not reliant on the grid. That means that even if there is a local power outage, brownout, or blackout, one can always come to Lost Hills to Supercharge.
If you’ve got a Cybertruck, you could take advantage of the Cybertruck’s Powershare feature and charge up at Lost Hills to help keep your home powered during a blackout, utilizing the Cybertruck as a portable battery charger. Now that’s true independence and self-reliance.
The Future of Charging
Solar-powered Superchargers help avoid massive new loads on already stressed electrical grids, especially during peak afternoon and evening hours, when demand is the highest.
This is Tesla’s vision for the future of charging: a clean, fully closed-loop ecosystem that sustains itself. The sun’s energy is captured, stored, and delivered directly to vehicles on site at any time of day without relying on the electrical grid or fossil fuels.
Largest Supercharger in the World
This opening of 84 stalls is just the first phase of the project. Tesla says that the remaining stalls, as well as a new on-site lounge, are coming later this year. Once complete, the 168-stall site will be the largest Supercharger site in the world.
While the speed of building such a massive project in just eight months is a testament to Tesla’s execution, the true innovation is actually that self-sustainability. Let’s hope we see even more large, self-sufficient Supercharger sites across the world in the near future.