This was an email about a conversation that the California DMV had with the engineers who are creating the software for Full Self Driving at Tesla. The email was dated March 9th about a phone conversation that had just been held.
Tesla said that there were currently 824 vehicles in the program, 753 employees and 71 nonemployees. The plan was to expand the number of beta testers to approximately 1600 people.
The DMV asked about how Tesla communicated with each potential beta tester. For the first 824 people, they called each one individually and discussed the capabilities and limitations of the system, and they got informed consent. Tesla said they were working on a video for new participants, and they promised to share the video with the DMV.
The DMV asked about the “Button” that Musk promised in a tweet. The engineers couldn’t comment on the “Button.” DMV asked about how additional participants would be selected, and the engineers said they would include referrals from current beta testers, and that they’d be vetted by checking on the auto insurance claims of potential new beta testers.
So when Elon Musk tweeted that FSD had no accidents yet, he was referring to a group of drivers that had been selected for safe driving histories.
DMV asked how beta testers sent feedback to Tesla, and, no surprise, they sent feedback by email or snail mail. Instances, when the FSD was overridden by the driver, were sent back to Tesla along with a video feed so that software engineers and the neural network could make improvements in the next iteration of the beta FSD software.
Then DMV asked Tesla about Elon Musk’s tweet that FSD would be at level 5 by the end of the calendar year. The engineers really tried to be supportive of their boss. They said he was extrapolating based on the amount of improvement they’d seen so far. But they said that the beta FSD is still firmly in level 2. The driver must be constantly involved in the driving process and must be ready at any second to take control. Their criterion for going to level five, full vehicle autonomy, would be one driver interaction with the system every one to two million miles. The engineers that are actually working on the system are not as confident about achieving level five autonomy this year as Elon is.
The engineers told DMV that they test the software by driving with it. They would know when a new release is going up a level. Right now, even the beta FSD is still in level 2. That means that the car can steer, accelerate and decelerate, start and stop, but human control could be required at any time.
Level 3 would mean that the car could drive itself most of the time, but the human would have to be alert for needed intervention. Level 4 would mean that the car drives itself all the time within certain areas and on certain types of roads.
Level 5 would mean that there would be no need for human controls because the car could go anywhere safely without any human supervision. Presumably, a level 5 autonomous car could drop its passengers off at their destination and then find a place to legally park. It would have to be able to read parking rule signs, and it would have to be able to pay for parking if paid parking was all that was available.
So my assessment of this information is that we can’t expect level five autonomy this year, but we can expect a wider availability of the beta version of FSD. But not everyone will get the “Button.” Tesla will check your driving record because, sadly, there are people who drive Teslas without paying attention even now, when even the beta FSD is still in level 2, not autonomous at all.
Tesla recently showed off a demo of Optimus, its humanoid robot, walking around in moderately challenging terrain—not on a flat surface but on dirt and slopes. These things can be difficult for a humanoid robot, especially during the training cycle.
Most interestingly, Milan Kovac, VP of Engineering for Optimus, clarified what it takes to get Optimus to this stage. Let’s break down what he said.
Optimus is Blind
Optimus is getting seriously good at walking now - it can keep its balance over uneven ground - even while walking blind. Tesla is currently using just the sensors, all powered by a neural net running on the embedded computer.
Essentially, Tesla is building Optimus from the ground up, relying on as much additional data as possible while it trains vision. This is similar to how they train FSD on vehicles, using LiDAR rigs to validate the vision system’s accuracy. While Optimus doesn’t have LiDAR, it relies on all those other sensors on board, many of which will likely become simplified as vision takes over as the primary sensor.
Today, Optimus is walking blind, but it’s able to react almost instantly to changes in the terrain underneath it, even if it falls or slips.
What’s Next?
Next up, Tesla AI will be adding vision to Optimus - helping complete the neural net. Remember, Optimus runs on the same overall AI stack as FSD - in fact, Optimus uses an FSD computer and an offshoot of the FSD stack for vision-based tasks.
Milan mentions they’re planning on adding vision to help the robot plan ahead and improve its walking gait. While the zombie shuffle is iconic and a little bit amusing, getting humanoid robots to walk like humans is actually difficult.
There’s plenty more, too - including better responsiveness to velocity and direction commands and learning to fall and stand back up. Falling while protecting yourself to minimize damage is something natural to humans - but not exactly natural to something like a robot. Training it to do so is essential in keeping the robot, the environment around it, and the people it is interacting with safe.
We’re excited to see what’s coming with Optimus next because it is already getting started in some fashion in Tesla’s factories.
In a relatively surprising move, GM announced that it is realigning its autonomy strategy and prioritizing advanced driver assistance systems (ADAS) over fully autonomous vehicles.
GM is effectively closing Cruise (autonomous) and focusing on its Super Cruise (ADAS) feature. The engineering teams at Cruise will join the GM teams working on Super Cruise, effectively shuttering the fully autonomous vehicle business.
End of Cruise
GM cites that “an increasingly competitive robotaxi market” and “considerable time and resources” are required for scaling the business to a profitable level. Essentially - they’re unable to keep up with competitors at current funding and research levels, putting them further and further behind.
Cruise has been offering driverless rides in several cities, using HD mapping of cities alongside vehicles equipped with a dazzling array of over 40 sensors. That means that each cruise vehicle is essentially a massive investment and does not turn a profit while collecting data to work towards Autonomy.
Cruise has definitely been on the back burner for a while, and a quick glance at their website - since it's still up for now - shows the last time they officially released any sort of major news packet was back in 2019.
Competition is Killer
Their current direct competitor - Waymo, is funded by Google, which maintains a direct interest in ensuring they have a play in the AI and autonomy space.
Interestingly, this news comes just a month after Tesla’s We, Robot event, where they showed off the Cybercab and the Robotaxi network, as well as plans to begin deployment of the network and Unsupervised FSD sometime in 2025. Tesla is already in talks with some cities in California and Texas to launch Robotaxi in 2025.
GM Admits Tesla Has the Right Strategy
As part of the business call following the announcement, GM admitted that Tesla’s end-to-end and Vision-based approach towards autonomy is the right strategy. While they say Cruise started down that path, they’re putting aside their goals towards fully autonomous vehicles for now and focusing on introducing that tech in Super Cruise instead.
NEWS: GM just admitted that @Tesla’s end-to-end approach to autonomy is the right strategy.
“That’s where the industry is pivoting. Cruise had already started making headway down that path. We are moving to a foundation model and end-to-end approach going forward.” pic.twitter.com/ACs5SFKUc3
With GM now focusing on Super Cruise, they’ll put aside autonomy and instead focus solely on ADAS features to relieve driver stress and improve safety. While those are positive goals that will benefit all road users, full autonomy is really the key to removing the massive impact that vehicle accidents have on society today.
In addition, Super Cruise is extremely limited, cannot brake for traffic controls, and doesn’t work in adverse conditions - even rain. It can only function when lane markings are clear, there are no construction zones, and there is a functional web connection.
The final key to the picture is that the vehicle has to be on an HD-mapped and compatible highway - essentially locking Super Cruise to wherever GM has time to spend mapping, rather than being functional anywhere in a general sense, like FSD or Autopilot.
Others Impressed - Licensing FSD
Interestingly, some other manufacturers have also weighed into the demise of Cruise. BMW, in a now-deleted post, said that a demo of Tesla’s FSD is “very impressive.” There’s a distinct chance that BMW and other manufacturers are looking to see what Tesla does next.
BMW chimes in on a now-deleted post. The Internet is forever, BMW!
Not a Tesla App
It seems that FSD has caught their eyes after We, Robot - and that the demonstrations of FSD V13.2 online seem to be the pivot point. At the 2024 Shareholder Meeting earlier in the year, Elon shared the fact that several manufacturers had reached out, looking to understand what was required to license FSD from Tesla.
There is a good chance 2025 will be the year we’ll see announcements of the adoption of FSD by legacy manufacturers - similar to how we saw the surprise announcements of the adoption of the NACS charging standard.