Tesla participated in Hot Chips 34 and shared a ton of mind-boggling information about their Dojo supercomputer and chip architecture.
The details shared about Dojo in Hot Chips 34 by Tesla’s Emil Talpes, who worked at AMD for about 17 years for Opteron processors, are only about the hardware and capabilities of the tiles and Dojo as a whole. The performance will be discussed at Tesla’s AI Day II on September 30th.
The goal with Dojo is, according to Musk, “to be really good at video training. We have probably the fourth or approaching the third most powerful computing center in the world for AI training. Our first goal with Dojo is to make it competitive and be more effective and neural net training than a whole bunch of GPUs.”
Since Tesla needs a lot of computing power to process the video data from the vehicles in its fleet, it has built a proprietary system-on-wafer solution. According to ServeTheHome, “Each D1 die is integrated onto a tile with 25 dies at 15kW. Beyond the 25 D1 dies, there are also 40 smaller I/O dies.”
All of the power and cooling is integrated directly on the Training Tile, which is capable of 10 TB/s on-tile bisection bandwidth and 36 TB/s off-tile aggregate bandwidth. This architecture allows for the tiles to be scaled with 9TB/s links between them. They can also be plugged in and do not require their own server.
“The defining goal of our application is scalability,” Talpes said at the end of the presentation. “We have de-emphasized several mechanisms that you find in typical CPUs, like coherency, virtual memory, and global lookup directories just because these mechanisms do not scale very well when we scale up to a very large system. Instead, we have relied on a very fast and very distributed SRAM storage throughout the mesh. And this is backed by an order of magnitude higher speed of interconnect than what you find in a typical distributed system.”
The inside look into what Tesla’s building behind the scenes continues to prove how and why Tesla is at the forefront in artificial intelligence and neural net training. It gives the Tesla community an added sense of comfort knowing that Tesla will always have scalability and innovative technology at the forefront of everything the automotive company does.
Watch Anastasi In Tech’s Recap of Tesla’s Hot Chip 34 Presentation
Subscribe
Subscribe to our newsletter to stay up to date on the latest Tesla news, upcoming features and software updates.
In just 8 months, Tesla has gone from breaking ground to delivering electrons at its most ambitious Supercharger project to date, just in time to be ready for the busy Fourth of July holiday weekend. Project Oasis, the world’s largest Supercharger site, is now partially open to customers for its first phase in Lost Hills, California.
What makes this remarkable is the speed of execution. In just eight months, Tesla has constructed a site that will eventually feature 168 stalls (84 stalls are now open), supported by 11 MW of solar power and 10 Megapacks of battery storage. That construction speed is pretty impressive, but what is even more impressive is how this new station operates and what it means for future Supercharging infrastructure.
Self-Sufficient Energy Oasis
Not a Tesla App
The first 84 stalls at Lost Hills are now open, and according to the Tesla Charging team, they are currently powered solely by the sun and operate off-grid.
This makes it more than just a new Supercharger site. It serves as a proof of concept for a new type of Supercharger. Unlike nearly every other charging site in the world, which draws power from local utilities, this station generates its own clean electricity from its massive solar array and stores it in its array of on-site Megapacks.
Self-sufficient charging stations are something completely different than what we see today. They are highly resilient since they’re not reliant on the grid. That means that even if there is a local power outage, brownout, or blackout, one can always come to Lost Hills to Supercharge.
If you’ve got a Cybertruck, you could take advantage of the Cybertruck’s Powershare feature and charge up at Lost Hills to help keep your home powered during a blackout, utilizing the Cybertruck as a portable battery charger. Now that’s true independence and self-reliance.
The Future of Charging
Solar-powered Superchargers help avoid massive new loads on already stressed electrical grids, especially during peak afternoon and evening hours, when demand is the highest.
This is Tesla’s vision for the future of charging: a clean, fully closed-loop ecosystem that sustains itself. The sun’s energy is captured, stored, and delivered directly to vehicles on site at any time of day without relying on the electrical grid or fossil fuels.
Largest Supercharger in the World
This opening of 84 stalls is just the first phase of the project. Tesla says that the remaining stalls, as well as a new on-site lounge, are coming later this year. Once complete, the 168-stall site will be the largest Supercharger site in the world.
While the speed of building such a massive project in just eight months is a testament to Tesla’s execution, the true innovation is actually that self-sustainability. Let’s hope we see even more large, self-sufficient Supercharger sites across the world in the near future.
Elon Musk is once again seeking to expand Tesla’s vertical integration in the energy sector, this time focusing squarely on solar power. Following discussions on X that highlighted the massive gap in solar deployments between the US and China, Elon is now discussing the need for a Tesla Solar Gigafactory in the United States.
This potential move is driven by a specific catalyst: the exponential growth of AI is creating an insatiable demand for electricity. For Tesla and xAI, two of Elon’s companies betting their future on AI, building the power generation required is a strategic necessity.
A new factory wouldn’t just be about making panels; it would be about manufacturing the final missing piece in Tesla’s vertically integrated energy ecosystem.
Maybe there should be a solar Gigafactory in America
The context for this renewed focus is pretty stark. In May, China reportedly added a staggering 93 gigawatts (GW) of solar power capacity. In contrast, the United States installed approximately 14 GW over the entire first quarter, roughly 20 times less than China.
The primary driver of this demand is the revolution in AI. Training ever-larger and smarter AI models involves operating vast data centers, which consume staggering amounts of power. Google, Amazon, and Microsoft have turned to small-scale nuclear reactors, with Microsoft petitioning to reopen the infamous Three Mile Island for its AI operations.
For Elon’s companies, whose future products like FSD, Optimus, and Grok are built on a foundation of real-world AI, securing a massive and sustainable energy supply isn’t a side quest. It is part of the main mission, especially in conjunction with grid-scale storage, such as Megapacks and Powerwalls. You can’t power a world of autonomous robots without a world of abundant, clean energy.
The Tesla Ecosystem
A US solar gigafactory would be the final, logical step in completing Tesla’s energy hardware ecosystem. While Tesla already manufactures some solar panels and the Tesla solar roof, the scale is too minuscule to matter.
By mass-producing its own panels, while also increasing Solar Roof production, Tesla would become a true one-stop shop for all things green energy. This would allow the company to supply its own large-scale projects, like the massive solar array for Project Oasis - the world’s largest Supercharger site.
It would also enable more complete residential packages, like the Giga-Small Haus concept home, combining Tesla-made panels and roofs with a Powerwall 3. This level of vertical integration would give Tesla complete control over the technology, cost, and supply of every major component in its energy ecosystem, from generation to storage to mobility.
Building a new Solar Gigafactory is about much more than just simply producing solar panels. It’s a requirement to power Tesla’s future products and make solar panels accessible to everyone.