Turquoise Lights Could Indicate an Autonomous Driving Vehicle
Not a Tesla App
Mercedes-Benz's introduction of turquoise Automated Driving Marker Lights for its DRIVE PILOT system, following the SAE J3134 Recommended Practice, marks another step in the evolution of automated driving technology. This move raises the question: Should Tesla and all automakers developing autonomous driving features follow Mercedes' lead? Considering the US's lack of a national regulatory framework and the implications for the future of autonomous driving, this topic will get more significant as technology evolves.
Establishing a Common Language for Automated Vehicles
Mercedes-Benz’s initiative underscores the importance of a standardized visual communication method for automated vehicles. Such standardization would help inform all drivers and pedestrians when vehicles operate autonomously, improving road safety and predictability. If Tesla adopted this system, it could contribute significantly to establishing a universal language for automated cars, fostering a safer and more efficient integration into the existing traffic ecosystem.
There is still a long road ahead to fully autonomous driving, mainly because the technology is dealing with human behavior, which, at times, can be unpredictable. But this kind of signal could alert other FSD vehicles to travel together, lessening the risk of human error during those long road trips.
Mercedes' turquoise light
Not a Tesla App
Risk of Misinterpretation
However, a significant concern for Tesla in adopting such a strategy is the potential for increased negative attention from EV critics. The move, known as 'rolling coal,' where diesel truck drivers intentionally emit large amounts of exhaust fumes near EVs, highlights tensions between traditional vehicle enthusiasts and the EV community. Introducing conspicuous turquoise lights might exacerbate this issue, making Tesla vehicles more of a target for such antagonistic behavior.
While using ADS marker lights offers clear benefits, concerns have been raised about their potential to attract intentional interference from other road users. There is also the risk of misinterpretation of these signals, which could lead to safety hazards. Tesla would need to consider these aspects carefully, ensuring that any implementation of such technology is accompanied by widespread public education and awareness campaigns to mitigate these risks.
There could also be an added risk of being a target on the road. If a pedestrian or vehicle knows that a vehicle is autonomous, they may take additional risks in passing or crossing in front of the vehicle, thinking that the vehicle will yield or stop for them.
Navigating the Regulatory Maze and Costs
Implementing turquoise lights as an indicator for full self-driving mode involves navigating complex legal and regulatory landscapes. Currently, there is no nationwide framework in the US for such technology. Mercedes only has approval for the new light in California and Nevada. Standardization requires extensive discussions and adaptations to the national road traffic and regulatory frameworks. Tesla would need to engage in these conversations actively and adapt to evolving standards, which could be resource-intensive.
However, Tesla is a leader in this sector and has experience changing opinions and getting support from competitors. Most automakers have announced plans to adopt Tesla’s NACS charging system, making the company’s charging technology the winner in North America. Others will notice and likely follow if Tesla considers a new light for its FSD.
Additionally, integrating these lights into Tesla's existing vehicle designs might require significant engineering adjustments, adding to the cost and complexity of their vehicles. Who would pay for the retrofit of the current fleet or would it only apply to new vehicles?
Enhancing Accessibility and Safety for Persons with Disabilities
One of the critical considerations for automated driving systems is their potential to provide mobility solutions for individuals who cannot obtain a driver's license due to various impairments. Clear visual signals like turquoise lights could make these technologies more accessible and understandable to all road users, including those with disabilities. By adopting such features, Tesla would be taking a step forward in creating inclusive and universally accessible transportation solutions.
The decision for Tesla to adopt turquoise lights similar to Mercedes-Benz for indicating full self-driving mode is multifaceted, involving considerations of safety, inclusivity, regulatory compliance, and public perception. As the landscape of automated driving continues to evolve, industry leaders like Tesla must navigate these challenges thoughtfully, contributing to a future where autonomous vehicles are seamlessly integrated into our daily lives, enhancing accessibility and safety for all road users.
Subscribe
Subscribe to our newsletter to stay up to date on the latest Tesla news, upcoming features and software updates.
In just 8 months, Tesla has gone from breaking ground to delivering electrons at its most ambitious Supercharger project to date, just in time to be ready for the busy Fourth of July holiday weekend. Project Oasis, the world’s largest Supercharger site, is now partially open to customers for its first phase in Lost Hills, California.
What makes this remarkable is the speed of execution. In just eight months, Tesla has constructed a site that will eventually feature 168 stalls (84 stalls are now open), supported by 11 MW of solar power and 10 Megapacks of battery storage. That construction speed is pretty impressive, but what is even more impressive is how this new station operates and what it means for future Supercharging infrastructure.
Self-Sufficient Energy Oasis
Not a Tesla App
The first 84 stalls at Lost Hills are now open, and according to the Tesla Charging team, they are currently powered solely by the sun and operate off-grid.
This makes it more than just a new Supercharger site. It serves as a proof of concept for a new type of Supercharger. Unlike nearly every other charging site in the world, which draws power from local utilities, this station generates its own clean electricity from its massive solar array and stores it in its array of on-site Megapacks.
Self-sufficient charging stations are something completely different than what we see today. They are highly resilient since they’re not reliant on the grid. That means that even if there is a local power outage, brownout, or blackout, one can always come to Lost Hills to Supercharge.
If you’ve got a Cybertruck, you could take advantage of the Cybertruck’s Powershare feature and charge up at Lost Hills to help keep your home powered during a blackout, utilizing the Cybertruck as a portable battery charger. Now that’s true independence and self-reliance.
The Future of Charging
Solar-powered Superchargers help avoid massive new loads on already stressed electrical grids, especially during peak afternoon and evening hours, when demand is the highest.
This is Tesla’s vision for the future of charging: a clean, fully closed-loop ecosystem that sustains itself. The sun’s energy is captured, stored, and delivered directly to vehicles on site at any time of day without relying on the electrical grid or fossil fuels.
Largest Supercharger in the World
This opening of 84 stalls is just the first phase of the project. Tesla says that the remaining stalls, as well as a new on-site lounge, are coming later this year. Once complete, the 168-stall site will be the largest Supercharger site in the world.
While the speed of building such a massive project in just eight months is a testament to Tesla’s execution, the true innovation is actually that self-sustainability. Let’s hope we see even more large, self-sufficient Supercharger sites across the world in the near future.
Elon Musk is once again seeking to expand Tesla’s vertical integration in the energy sector, this time focusing squarely on solar power. Following discussions on X that highlighted the massive gap in solar deployments between the US and China, Elon is now discussing the need for a Tesla Solar Gigafactory in the United States.
This potential move is driven by a specific catalyst: the exponential growth of AI is creating an insatiable demand for electricity. For Tesla and xAI, two of Elon’s companies betting their future on AI, building the power generation required is a strategic necessity.
A new factory wouldn’t just be about making panels; it would be about manufacturing the final missing piece in Tesla’s vertically integrated energy ecosystem.
Maybe there should be a solar Gigafactory in America
The context for this renewed focus is pretty stark. In May, China reportedly added a staggering 93 gigawatts (GW) of solar power capacity. In contrast, the United States installed approximately 14 GW over the entire first quarter, roughly 20 times less than China.
The primary driver of this demand is the revolution in AI. Training ever-larger and smarter AI models involves operating vast data centers, which consume staggering amounts of power. Google, Amazon, and Microsoft have turned to small-scale nuclear reactors, with Microsoft petitioning to reopen the infamous Three Mile Island for its AI operations.
For Elon’s companies, whose future products like FSD, Optimus, and Grok are built on a foundation of real-world AI, securing a massive and sustainable energy supply isn’t a side quest. It is part of the main mission, especially in conjunction with grid-scale storage, such as Megapacks and Powerwalls. You can’t power a world of autonomous robots without a world of abundant, clean energy.
The Tesla Ecosystem
A US solar gigafactory would be the final, logical step in completing Tesla’s energy hardware ecosystem. While Tesla already manufactures some solar panels and the Tesla solar roof, the scale is too minuscule to matter.
By mass-producing its own panels, while also increasing Solar Roof production, Tesla would become a true one-stop shop for all things green energy. This would allow the company to supply its own large-scale projects, like the massive solar array for Project Oasis - the world’s largest Supercharger site.
It would also enable more complete residential packages, like the Giga-Small Haus concept home, combining Tesla-made panels and roofs with a Powerwall 3. This level of vertical integration would give Tesla complete control over the technology, cost, and supply of every major component in its energy ecosystem, from generation to storage to mobility.
Building a new Solar Gigafactory is about much more than just simply producing solar panels. It’s a requirement to power Tesla’s future products and make solar panels accessible to everyone.