The project cost 6 million for the 1 mile strip, but costs are expected to decrease
NBC News
Detroit has unveiled America’s first wireless-charging public roadway for electric vehicles, marking a significant advancement in EV infrastructure. This innovative project, located on a quarter-mile stretch of 14th Street near the iconic Michigan Central Station, demonstrates a remarkable feat of engineering and cooperation between public and private entities. It also further justifies Tesla's investment in wireless charging and the opportunities it presents.
The technology behind this marvel involves rubber-coated copper coils embedded beneath the road surface. These coils enable charging for EVs equipped with specialized receivers. During a recent demonstration, a blue electric Ford E-Transit van showcased the capability of this system, charging efficiently as it moved along the road. This fascinating technology display was complemented by a large video screen, providing real-time data on the energy transfer.
The project, a collaboration between the Michigan Department of Transportation, Electreon, and other partners, represents a significant step towards scalable, wireless EV charging solutions. While currently limited to vehicles with specific receivers, this technology paves the way for broader applications and integration into the existing EV ecosystem.
Tesla's Strategic Move into Wireless Charging
Amidst these developments, Tesla's foray into wireless charging technology is timely. At the last Investor Day, Rebecca Tinucci, Senior Director of Charging Infrastructure at Tesla, hinted at incorporating wireless charging into Tesla's plans. The company then bought Wiferion, a German-based wireless charging startup. Wiferion's expertise in inductive charging systems, which are capable of delivering high power and enabling rapid charging, complements Tesla's vision.
Tesla then sold the company but kept its engineers. The strategic acquisition of talent significantly impacts the future of Tesla's charging infrastructure, potentially integrating these advanced technologies into its broader portfolio of products and services.
Reducing the Costs of EVs
Introducing wireless charging roads and Tesla's interest in the technology signals a transformative phase in EV charging infrastructure. While Detroit's project serves as a pilot, it has far-reaching implications. The technology would eliminate range anxiety and could reduce the need for large batteries in EVs, thereby decreasing vehicle costs and making them more efficient and environmentally friendly. Furthermore, Electreon's focus on public and last-mile delivery vehicles opens new avenues for efficient urban transportation.
As we look ahead, expanding such technologies could redefine the EV experience. The prospect of seamless, on-the-go charging without the need for stationary charging stations presents a convenient and eco-friendly alternative. These developments enhance the practicality of EVs and signify a shift towards a more sustainable and technologically advanced future in automotive transportation.
Subscribe
Subscribe to our newsletter to stay up to date on the latest Tesla news, upcoming features and software updates.
At the recent X Takeover event this past weekend, two of Tesla’s most important leaders gave in-depth interviews that provided a unique view into Tesla’s path forward and how everything comes together internally.
An interview with Elon Musk laid out the grand vision for Tesla and his other companies, focusing on the ambitious “what and why.” Later, Head of Vehicle Engineering Lars Moravy provided the more grounded, engineering-focused “how,” detailing the immense work it takes to turn the vision into a reality.
What emerged from these conversations was a clearer picture of Tesla’s strategy: a relentless, long-term vision for the future of transportation, AI, robotics, and energy, supported by a world-class engineering team capable of developing the processes to turn these products into a reality.
Robotaxi & Cybercab
For years, the concept of Unsupervised FSD, as well as Robotaxis, has been the focal point of Tesla’s future. In his interview, Elon provided fresh details on the way they expect the business model to work. Tesla plans to operate a fleet where some vehicles are company-owned, while others are owned by customers. This is essentially a combination of Uber and Airbnb, taking a bit of a hybrid approach between the two different styles.
He also went on to confirm that the purpose-built, two-seater Cybercab would complement, but not replace, Tesla’s existing models. This is key, because many have thought that Tesla would end their consumer vehicle sales or drastically reduce them as they transitioned to an AI services company, and became less of a car company. Now, it seems we know that they’ll have a lasting stake in personal car ownership.
The Cybercab, which is a revolutionary vehicle without driver controls, requires an equally revolutionary process to build it. In his interview, Lars Moravy provided the answer and detailed the unboxed manufacturing process that Tesla has been developing.
The unboxed method challenges a century of established automotive assembly by breaking the vehicle down into smaller, parallel sub-assemblies, allowing more work to be done simultaneously. The goal is to drastically shorten the main assembly line, enabling vehicle sections to be built in parallel and come together at the end.
Lars also noted that Tesla has already done the initial batch of crash testing for the Cybercab prototypes, and the vehicle has passed with flying colors. This isn’t surprising for Tesla, which integrates vehicle safety right into the structure of the vehicle, building castings that transfer force away from occupants.
The Semi
While Elon’s interview focused on some of his grander ambitions like Mars colonization, Lars provided some tangible updates on two of Tesla’s most anticipated vehicles.
On the Tesla Semi, Lars confirmed that progress is well underway at the Semi factory in Reno, Nevada. After years of focusing on engineering prototypes to ensure the reliability of a commercial workhorse vehicle, Tesla is now expected to ramp up production by the end of 2025, continuing through into early 2026. The business case for the Semi is crystal clear - build a no-brainer choice for shipping and logistics companies, who need to weigh the initial buy-in and infrastructure costs against operating costs per mile.
The Semi, just like other EVs, absolutely trumps diesel trucks in cost per mile, due to lower energy costs and less maintenance. However, the somewhat hidden advantage here is that truck drivers drastically prefer to drive the Tesla Semi over other diesel trucks, citing things such as better visibility, a smoother ride, and easier driving. These are advantages that could lead to improved employee retention and easier driver recruitment.
Meanwhile, the Semi simply needs to have infrastructure installed at the starting and ending locations for major delivery companies, enabling end-to-end supply chain handover.
The Roadster
Lars also talked about Tesla’s upcoming Roadster, confirming that it’s still in development, with the team preparing for a mind-blowing demo sometime soon. Elon previously hinted at this demo during a visit to the Tesla Design Studio, where he said a mind-blowing demo would be coming by the end of the year.
The goal for Tesla is to make it the last, best driver’s car before the world begins transitioning to full autonomy. Lars also touched on one of the biggest challenges with the Roadster. There is an immense engineering challenge being taken on now - and it's the SpaceX package. This package is set to use cold-gas thrusters to push the Roadster past what is conventionally possible. In fact, just as Elon has previously mentioned, the Roaster may be able to “fly a little.”
Last, best driver’s car
Lars Moravy
You can watch the full interview below. Lar’s portion on the Roadster starts at 26:30.
Optimus: Sustainable Abundance
One of the most ambitious parts of Elon’s vision is the Optimus humanoid robot. He has stated his belief many times that the robotics business could be many times more valuable than Tesla’s entire automotive business, and if it works as planned, it definitely will be.
The current Optimus V3 design is intended for volume production, with Elon foreseeing a future market of billions of humanoid robots - not made just by Tesla, but the market as a whole. That many units could simply eliminate human poverty and usher in an age of sustainable abundance.
That grand vision is built on top of the manufacturing and automation expertise that Lars’ team is pioneering every day. With volume production of Optimus to begin next year, and real work already being done in Tesla’s factories, we may see humanoid robots making a real impact on the lifestyle and livelihood of people within the next few years.
The Unfair Advantage: Getting Sh*t Done
All of these ambitious ideas and products are enabled what what is perhaps Tesla’s true sauce - its unique internal culture of getting sh*t done. Lars’ interview provided us with a rare look inside to see just how it all comes together.
He described working with Elon as unique - the discussions are grounded in physics, and Elon trusts his teams to turn his dreams and ambitions into reality. This, in turn, creates a culture of mutual respect and high expectations.
The collaborative spirit extends to the relationship between engineering and design, which Lars described as highly unusual for the auto industry. Rather than the two teams being hostile to each other, they work together to make bold design and engineering choices, like the Cybertruck, into reality.
Underpinning all of this is what Lars himself calls Tesla’s superpower: in-house automation and manufacturing engineering teams. These teams work to design the machine that builds the machines - innovating and solving problems at a level and speed that is simply not possible when relying on external vendors.
This combination of a relentless long-term vision, alongside a first-principles engineering culture, allows Tesla to take big risks and make big plays that define its future path. While all of Tesla’s timelines are ambitious, these interviews make it clear that the ambitious vision is paired with a concrete and innovative plan for execution.
The map above compares Tesla's current geofence with their potential expansion in yellow.
Not a Tesla App
With Tesla’s first major expansion of the Robotaxi Geofence now complete and operational, they’ve been hard at work with validation in new locations - and some are quite the drive from the current Austin Geofence.
Validation fleet vehicles have been spotted operating in a wider perimeter around the city, from rural roads in the west end to the more complex area closer to the airport. Tesla mentioned during their earnings call that the Robotaxi has already completed 7,000 miles in Austin, and it will expand its area of operation to roughly 10 times what it is now. This lines up with the validation vehicles we’ve been tracking around Austin.
Based on the spread of the new sightings, the potential next geofence could cover a staggering 450 square miles - a tenfold increase from the current service area of roughly 42 square miles.
If Tesla decides to expand into these new areas, it would represent a tenfold increase over their current geofence, matching Tesla’s statement. The new area would cover approximately 10% of the 4,500-square-mile Austin metropolitan area. If Tesla can offer Robotaxi services in that entire area, it would prove they can tackle just about any city in the United States.
In the map below, the blue icons are sightings of Tesla validation vehicles, while the yellow map area represents their potential expansion. The map overlays Tesla’s phases 1 and 2 and compares them to Waymo’s first two phases. You can toggle each one by tapping the icon at the top left and choosing which geofences you’d like to view.
From Urban Core to Rural Roads
The locations of the validation vehicles show a clear intent to move beyond the initial urban and suburban core and prepare the Robotaxi service for a much wider range of uses.
In the west, validation fleet vehicles have been spotted as far as Marble Falls - a much more rural environment that features different road types, higher speed limits, and potentially different challenges.
In the south, Tesla has been expanding towards Kyle, which is part of the growing Austin-San Antonio suburban corridor spanning Highway 35. San Antonio is only 80 miles (roughly a 90-minute drive) away, and could easily become part of the existing Robotaxi area if Tesla obtains regulatory approval there.
In the East, we haven’t spotted any new validation vehicles. This is likely because Tesla’s validation vehicles originate from Giga Texas, which is located East of Austin. We won’t really know if Tesla is expanding in this direction until they start pushing past Giga Texas and toward Houston.
Finally, there have been some validation vehicles spotted just North of the new expanded boundaries, meaning that Tesla isn’t done in that direction either. This direction consists of the largest suburban areas of Austin, which have so far not been serviced by any form of autonomous vehicle.
Rapid Scaling
This new, widespread validation effort confirms what we already know. Tesla is pushing for an intensive period of public data gathering and system testing in a new area, right before conducting geofence expansions. The sheer scale of this new validation zone tells us that Tesla isn’t taking this slowly - the next step is going to be a great leap instead, and they essentially confirmed this during this Q&A session on the recent call. The goal is clearly to bring the entire Austin Metropolitan area into the Robotaxi Network.
While the previous expansion showed off just how Tesla can scale the network, this new phase of validation testing is a demonstration of just how fast they can validate and expand their network. The move to validate across rural, suburban, and urban areas simultaneously shows their confidence in these new Robotaxi FSD builds.
Eventually, all these improvements from Robotaxi will make their way to customer FSD builds sometime in Q3 2025, so there is a lot to look forward to.