Breaking Down Tesla’s Autopilot vs. Wall “Wile E. Coyote” Video

By Not a Tesla App Staff
Mark Rober

Mark Rober, of glitter bomb package fame, recently released a video titled Can You Fool A Self-Driving Car? (posted below). Of course, the vehicle featured in the video was none other than a Tesla - but there’s a lot wrong with this video that we’d like to discuss.

We did some digging and let the last couple of days play out before making our case. Mark Rober’s Wile E. Coyote video is fatally flawed.

The Premise

Mark Rober wanted to prove whether or not it was possible to fool a self-driving vehicle, using various test scenarios. These included a wall painted to look like a road, low-lying fog, mannequins, hurricane-force rain, and bright beams.

All of these individual “tests” had their own issues - not least because Mark didn’t adhere to any sort of testing methodology, but because he was looking for a result - and edited his tests until he was sure of it.

Interestingly, many folks on X were quick to spot that Mark had been previously sponsored by Google to use a Pixel phone - but was using an iPhone to record within the vehicle - which he had edited to look like a Pixel phone for some reason. This, alongside other poor edits and cuts, led many, including us, to believe that Mark’s testing was edited and flawed.

Flaw 1: Autopilot, Not FSD

Let’s take a look at the first flaw. Mark tested Autopilot - not FSD. Autopilot is a driving aid for lane centering and speed control - and is not the least bit autonomous. It cannot take evasive maneuvers outside the lane it is in, but it can use the full stable of Tesla’s extensive features, including Automatic Emergency Braking, Forward Collision Warnings, Blind Spot Collision Warnings, and Lane Departure Avoidance.

On the other hand, FSD is allowed and capable of departing the lane to avoid a collision. That means that even if Autopilot tried to stop and was unable to, it would still impact whatever obstacle was in front of it - unlike FSD.

As we continue with the FSD argument - remember that Autopilot is running on a 5-year-old software stack that hasn’t seen updates. Sadly, this is the reality of Tesla not updating the Autopilot stack for quite some time. It seems likely that they’ll eventually bring a trimmed-down version of FSD to replace Autopilot, but that hasn’t happened yet.

Mark later admitted that he used Autopilot rather than FSD because “You cannot engage FSD without putting in a destination,” which is also incorrect. It is possible to engage FSD without a destination, but FSD chooses its own route. Where it goes isn’t within your control until you select a destination, but it tends to navigate through roads in a generally forward direction.

The whole situation, from not having FSD on the vehicle to not knowing you can activate FSD without a destination, suggests Mark is rather unfamiliar with FSD and likely has limited exposure to the feature.

Let’s keep in mind that FSD costs $99 for a single month, so there’s no excuse for him not using it in this video.

Flaw 2: Cancelling AP and Pushing Pedals

Many people on X also followed up with reports that Mark was pushing the pedals or pulling on the steering wheel. When you tap on the brake pedal or pull or jerk the steering wheel too much, Autopilot will disengage. For some reason, during each of his “tests,” Mark closely held the steering wheel of the vehicle.

This comes off as rather odd - at the extremely short distances he was enabling AP at, there wouldn’t be enough time for a wheel nag or takeover warning required. In addition, we can visibly see him pulling the steering wheel before “impact” in multiple tests.

Over on X, techAU breaks it down excellently on a per-test basis. Mark did not engage AP in several tests, and he potentially used the accelerator pedal during the first test - which means that Automatic Emergency Braking is overridden. In another test, Mark admitted to using the pedals.

Flaw 3: Luminar Sponsored

This video was potentially sponsored by a LiDAR manufacturer - Luminar. Although Mark says that this isn’t the case. Interestingly, Luminar makes LiDAR rigs for Tesla - who uses them to test ground truth accuracy for FSD. Just as interesting, Luminar’s Earnings Call was also coming up at the time of the video’s posting.

Luminar had linked the video at the top of their homepage but has since taken it down. While Mark did not admit to being sponsored by Luminar, there appear to be more distinct conflicts of interest, as Mark’s charity foundation has received donations from Luminar’s CEO.

Given the positivity of the results for Luminar, it seems that the video had been well-designed and well-timed to take advantage of the current wave of negativity against Tesla, while also driving up Luminar’s stock.

Flaw 4: Vision-based Depth Estimation

The next flaw to address is the fact that humans and machines can judge depth using vision. On X, user Abdou ran the “invisible wall” through a monocular depth estimation model (DepthAnythingV2) - one that uses a single image with a single angle. This fairly simplified model can estimate the distance and depth of items inside an image - and it was able to differentiate the fake wall from its surroundings easily.

Tesla’s FSD uses a far more advanced multi-angle, multi-image tool that stitches together and creates a 3D model of the environment around it and then analyzes the result for decision-making and prediction. Tesla’s more refined and complex model would be far more able to easily detect such an obstacle - and these innovations are far more recent than the 5-year-old Autopilot stack.

While detecting distances is more difficult in a single image, once you have multiple images, such as in a video feed, you can more easily decipher between objects and determine distances by tracking the size of each pixel as the object approaches. Essentially, if all pixels are growing at a constant rate, then that means it’s a flat object — like a wall.

Case in Point: Chinese FSD Testers

To make the case stronger - some Chinese FSD testers took to the streets and put up a semi-transparent sheet - which the vehicle refused to drive through or drive near. It would immediately attempt to maneuver away each time the test was engaged - and refused to advance with a pedestrian standing in the road.

Thanks to Douyin and Aaron Li for putting this together, as it makes an excellent basic example of how FSD would handle such a situation in real life.

Flaw 5: The Follow-Up Video and Interview

Following the community backlash, Mark released a video on X, hoping to resolve the community’s concerns. However, this also backfired. It turned out Mark’s second video was of an entirely different take than the one in the original video - this was at a different speed, angle, and time of initiation.

Mark then followed up with an interview with Philip DeFranco (below), where he said that there were multiple takes and that he used Autopilot because he didn’t know that FSD could be engaged without a destination. He also answered here that Luminar supposedly did not pay him for the video - even with their big showing as the “leader in LiDAR technology” throughout the video.

Putting It All Together

Overall, Mark’s video was rather duplicitous - he recorded multiple takes to get what he needed, prevented Tesla’s software from functioning properly by intervening, and used an outdated feature set that isn’t FSD - like his video is titled.

Upcoming Videos

Several other video creators are already working to replicate what Mark “tried” to test in this video.

To get a complete picture, we need to see unedited takes, even if they’re included at the end of the video. The full vehicle specifications should also be disclosed. Additionally, the test should be conducted using Tesla’s latest hardware and software—specifically, an HW4 vehicle running FSD v13.2.8.

In Mark’s video, Autopilot was engaged just seconds before impact. However, for a proper evaluation, FSD should be activated much earlier, allowing it time to react and, if capable, stop before hitting the wall.

A wave of new videos is likely on the way—stay tuned, and we’ll be sure to cover the best ones.

Tesla Semi Keynote: New Features, 46 Charging Sites, Upgraded Battery & More [VIDEO]

By Karan Singh
Out of Spec BITS/YouTube

Tesla’s Dan W Priestley attended the Advanced Clean Transportation (ACT) Expo in Anaheim, California, and provided an update on Tesla’s Semi truck program. The presentation covered several key developments on the status of Tesla’s Nevada Semi Factory, refinements to the Semi, and Tesla’s plans for charging and ramping production through 2026.

Let’s dig in and take a look at everything that was captured by the Out of Spec team at ACT Expo. The original video is embedded below if you’d like to watch it.

Semi Factory & Production Ramp

Priestley reaffirmed the timelines mentioned during Tesla’s Q4 2024 Earnings Call that Tesla will scale Semi production in 2026. To achieve this, Tesla has been actively building and expanding the Gigafactory Nevada site, specifically to support the production of the Tesla Semi. The dedicated Semi facility will have a targeted annual capacity of 50,000 Semi trucks.

Following the beginning of production, Tesla will utilize the initial trucks to integrate into its own logistics operations. This will serve as both a final real-world testing ground as well as an opportunity for Tesla to gather data internally. Tesla plans to begin subsequent customer deliveries throughout 2026 as the ramp-up continues.

Reuters also reported that Tesla is hiring over 1,000 new employees at the Semi Factory to begin the rapid ramping of the program.

Semi has already amassed 7.9 million miles with Tesla’s current testing and operational fleets, providing some real-world data and testing. Feedback for the truck has been exceptionally successful, with many drivers praising the Semi’s performance and comfort.

New Tesla Semi Features

Of course, it wouldn’t be a Tesla keynote without showing off some new things. The Semi will be available in 500-mile and 300-mile range configurations, now featuring updated mirror designs and a drop-down glass section to improve visibility and allow easier interaction with external elements—such as control panels at ports, for example.

New Electric Power Take-Off (e-PTO)

The Tesla Semi will also feature a new capability called Electric Power Take-Off, or e-PTO system. Similar to the PTO systems found on other vehicles, this will allow the Semi’s high-voltage battery to power auxiliary equipment at variable voltages. That includes being able to power things like climate-controlled reefer trailers, potentially replacing the noisy and polluting diesel generators traditionally used for this purpose.

Charging and Batteries

Out of Spec BITS/YouTube

Tesla is also working on an updated battery pack design for the final production design of the Semi. This new pack is designed to be more cost-effective to manufacture. The battery pack itself is slightly smaller than before, but the truck maintains the same level of range through efficiencies. Dan also confirmed during his keynote that the battery cells for the Semi will be sourced domestically inside the United States, helping to alleviate potential burdens due to tariffs.

On the charging front, Tesla is using MCS - the Megawatt Charging System - capable of 1.2MW - and designed specifically for Semi. The system uses the same V4 charging hardware found at Supercharger sites but focuses on that larger power output. Alongside a smaller physical footprint, Tesla will be able to configure these V4 cabinets for either dedicated Semi charging or for shared power scenarios with regular Superchargers. Tesla is also working on an integrated overnight charging product, but Tesla isn’t ready to talk about it yet.

46 Semi Charger Sites Coming

The 46 new MCS sites coming soon.
The 46 new MCS sites coming soon.
Out of Spec BITS/YouTube

Finally, Tesla has made substantial investments in a public charging network for the Semi. There are currently 46 sites in progress throughout the United States, and plans for significant expansion throughout 2026 and 2027. These sites are strategically located alongside major truck routes and within industrial areas to support long-haul and regional operations. Tesla is aiming to offer the lowest possible energy costs to operators to help incentivize adoption.

This was one of the best updates to the Tesla Semi we’ve received since its initial unveiling. It seems that the Semi will receive a big portion of Tesla’s attention in 2026, while Robotaxi and FSD Unsupervised take the stage this year.

The Tesla Semi has the potential to transform transportation even more dramatically than EVs already have, serving as a testament to Tesla’s mission to electrify the world.

Tesla’s B-Pillar Sentry Mode Recording Requires HW4, Not Just Ryzen — Breakdown of Spring Update Requirements

By Karan Singh
Not a Tesla App

Sentry Mode is an invaluable tool for owners - capable of keeping the vehicle safe and secure even when you’re not around. This is especially true in recent times, with the misguided and unfortunate incidents surrounding Tesla ownership, including damage to Tesla vehicles, showrooms, and Superchargers.

B-pillar Camera Recording and Dashcam Viewer

With the 2025 Spring Update on 2025.14, Tesla is expanding Sentry Mode’s functionality for certain vehicles with some much-needed changes. Sentry Mode and Dashcam can now record footage from the vehicle’s B-pillar cameras. These cameras are located on the side pillars of the vehicle, between the front and rear doors.

This adds two crucially needed viewpoints, making Tesla’s Sentry Mode a truly 360-degree security system. These cameras also provide the best angles for capturing license plates when parked, so they will be greatly appreciated by owners in the event of an incident.

These vehicles are also receiving an improved Dashcam Viewer, which now displays the six camera feeds along the bottom and a new grid view. It also allows users to jump back or forward in the video in 15-second increments.

However, to the disappointment of many owners, not all vehicles are receiving these updates due to the additional processing power needed.

Limited to Hardware 4 Vehicles, Ryzen Isn’t Enough

We have confirmed that Tesla is only adding the additional camera recording and improved Dashcam Viewer on hardware 4 (HW4 / AI4) vehicles. The newer hardware presumably has the additional processing power and bandwidth needed to handle recording and saving the two additional video streams during Sentry Mode and Dashcam.

For the time being, owners of HW3 vehicles are not receiving this feature. This includes all vehicles with HW3, even those with AMD Ryzen infotainment systems. If you’re not sure whether your vehicle has HW3 or HW4, you can refer to our FSD hardware guide.

While there’s no doubt that recording two additional camera streams would be more computationally intensive, we hope that Tesla adds the improved Dashcam Viewer to HW3 vehicles in a future update.

Cybertruck Also Missing Improved Sentry Mode

Surprisingly, and most confusing for many - is the fact that the Cybertruck is also not receiving the improved Dashcam Viewer and B-pillar camera recording with this update. This struck us as odd, especially since the Cybertruck is currently the only vehicle with the improved, more efficient version of Sentry Mode.

Every Cybertruck is equipped with HW4 and AMD Ryzen infotainment units, so this clearly isn’t a hardware restriction. It’s possible the more efficient Sentry Mode is playing a role here due to the infrastructure changes. However, we expect Tesla to address this in a future update and eventually release these features for the Cybertruck as well.

Given the Cybertruck’s high visibility and its status as a frequent target for both positive and negative attention, many owners hoped that the Cybertruck would be one of the vehicles to receive this feature.

Adaptive Headlights

Tesla finally started rolling out its adaptive headlights in North America. While the new Model Y already came with the feature when it was released last month, other vehicles with matrix headlights are now receiving the feature in the Spring Update.

All vehicles with matrix headlights are receiving this feature, which includes the new and old Model 3, first-gen Model Y, and the new Model S and Model X.

If you’re not sure if your vehicle includes matrix headlights, check out our guide. What’s interesting here is that older vehicles that were retrofitted with matrix headlights due to an accident or user replacement are also receiving the adaptive headlights feature.

Legacy Model S & Model X

As with most updates, the older legacy Model S and Model X are not receiving all the features included in this update. Unfortunately, some of the features, which include the Blind Spot Camera on the instrument cluster, Save Trunk Height Based on Location and Keep Accessory Power On are limited to the new Model S and X.

Legacy S and X models will receive the Alternative Trip Plans feature, Avoid Highways (Requires Intel MCU) and the Keyboard Languages feature.

These vehicles are also receiving all the features in the Minor Updates section except for the visualization showing how far the door is opened, which is exclusive to the Cybertruck. These additions include improved music search results, contact photos in the phone app, automatic connecting to hotspots, the ability to show third-party chargers, view Supercharger amenities, and various improvements to music services.

While many users will be disappointed not to receive the B-pillar camera recording and Dashcam Viewer improvements, it’s important to remember that Tesla typically does a great job at bringing features to older vehicles, at least with the Model 3 and Model Y. If a feature isn’t added, it’s usually due to a hardware limitation.

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

More Tesla News

Tesla Videos

Latest Tesla Update

Confirmed by Elon

Take a look at features that Elon Musk has said will be coming soon.

Subscribe

Subscribe to our weekly newsletter