Intel-based vehicles will still get some new visuals during Autopark
Not a Tesla App
Tesla is starting to roll out its latest iteration of Autopark to additional vehicles. The feature that lets your vehicle park automatically was initially rolled out in North America to vehicles without ultrasonic sensors (USS). However, now with FSD v12.3.6, it's going out to vehicles with USS as well.
However, there are differences in how Autopark looks visually, depending on whether you have an infotainment unit that is based on the slower Intel Atom processor, or the latest AMD Ryzen processor.
What’s the Same
Both vehicles will receive the new Autopark and the functionality remains the same. The difference lies in the visuals and whether the vehicle is capable of displaying Tesla’s High Fidelity Park Assist. All vehicles will display available parking spots when you're traveling under 5 mph. You can then tap any of the spots to have your vehicle automatically park at the chosen location.
Intel Vehicles Will Still New New Visuals
Contrary to what was expected, vehicles with the older processor will still display some new visuals, beyond the parking spots. Think of it as a less intense version of High Fidelity Park Assist. Whereas Park Assist on AMD vehicles shows a complete 3D reconstruction of objects in 3D, Intel vehicles will display what looks more like a two-dimensional overhead view. However, it will still display road markings, like arrows and parking lines and even walls and barriers, but unfortunately, the view can not be spun in a 3D fashion like visualizations normally can.
This is a great summary of my AutoPark discoveries yesterday w/ FSD 12.3.6 on my Model 3 with Ultrasonic Sensors and INTEL Atom CPU.
The lines and objects displayed are different from the vector-based lines the vehicle normally displays on roads. FSD visualizations aren’t, in fact, recreating the environment they see, they’re simply detecting an arrow, line, or object and then replacing it with a pre-created 3D asset in the visualization. Although these reconstructions don’t look as sharp or pretty, they’ll mimic whatever is actually drawn on the road.
For vehicles with AMD processors, you'll see the previously released High Fidelity Park Assist (video below), which does look amazing.
If you’d like to always use High Fidelity Park Assist visuals even when you’re not using Autopark, then you’ll need to disable your ultrasonic sensors and give up the accurate measurements they display.
You can change your setting under Controls > Autopilot > Park Assist and toggle between Standard or Vision.
High-fidelity park assist is shipping this weekend to Tesla customers without ultrasonic sensors as part of the holiday release!pic.twitter.com/MEHL6w003r
If your vehicle has ultrasonic sensors, then the new Autopark is currently only available on FSD v12.3.6 , which is update 2024.3.25, but since Autopark only requires Enhanced Autopilot or above, it should be bundled with a non-FSD update in the future.
While the new Autopark is only available in North America, it is expected to be rolled out to additional regions in the near future as Tesla continues to test the feature.
If you're not sure if your vehicle has an Intel Atom or AMD Ryzen processor, you can double-check by going under Controls > Software > Additional Vehicle Information. You'll see your infotainment processor listed there.
Subscribe
Subscribe to our newsletter to stay up to date on the latest Tesla news, upcoming features and software updates.
With Tesla’s first major expansion of the Robotaxi Geofence now complete and operational, they’ve been hard at work with validation in new locations - and some are quite the drive from the current Austin Geofence.
Validation fleet vehicles have been spotted operating in a wider perimeter around the city, from rural roads in the west end to the more complex area closer to the airport. Tesla mentioned during their earnings call that the Robotaxi has already completed 7,000 miles in Austin, and it will expand its area of operation to roughly 10 times what it is now. This lines up with the validation vehicles we’ve been tracking around Austin.
Based on the spread of the new sightings, the potential next geofence could cover a staggering 450 square miles - a tenfold increase from the current service area of roughly 42 square miles. You can check this out in our map below with the sightings we’re tracking.
If Tesla decides to expand into these new areas, it would represent a tenfold increase over their current geofence, matching Tesla’s statement. The new area would cover approximately 10% of the 4,500-square-mile Austin metropolitan area. If Tesla can offer Robotaxi services in that entire area, it would prove they can tackle just about any city in the United States.
From Urban Core to Rural Roads
The locations of the validation vehicles show a clear intent to move beyond the initial urban and suburban core and prepare the Robotaxi service for a much wider range of uses.
In the west, validation fleet vehicles have been spotted as far as Marble Falls - a much more rural environment that features different road types, higher speed limits, and potentially different challenges.
In the south, Tesla has been expanding towards Kyle, which is part of the growing Austin-San Antonio suburban corridor spanning Highway 35. San Antonio is only 80 miles (roughly a 90-minute drive) away, and could easily become part of the existing Robotaxi area if Tesla obtains regulatory approval there.
In the East, we haven’t spotted any new validation vehicles. This is likely because Tesla’s validation vehicles originate from Giga Texas, which is located East of Austin. We won’t really know if Tesla is expanding in this direction until they start pushing past Giga Texas and toward Houston.
Finally, there have been some validation vehicles spotted just North of the new expanded boundaries, meaning that Tesla isn’t done in that direction either. This direction consists of the largest suburban areas of Austin, which have so far not been serviced by any form of autonomous vehicle.
Rapid Scaling
This new, widespread validation effort confirms what we already know. Tesla is pushing for an intensive period of public data gathering and system testing in a new area, right before conducting geofence expansions. The sheer scale of this new validation zone tells us that Tesla isn’t taking this slowly - the next step is going to be a great leap instead, and they essentially confirmed this during this Q&A session on the recent call. The goal is clearly to bring the entire Austin Metropolitan area into the Robotaxi Network.
While the previous expansion showed off just how Tesla can scale the network, this new phase of validation testing is a demonstration of just how fast they can validate and expand their network. The move to validate across rural, suburban, and urban areas simultaneously shows their confidence in these new Robotaxi FSD builds.
Eventually, all these improvements from Robotaxi will make their way to customer FSD builds sometime in Q3 2025, so there is a lot to look forward to.
For years, the progress of Tesla’s FSD has been measured by smoother turns, better lane centering, and more confident unprotected left turns. But as the system matures, a new, more subtle form of intelligence is emerging - one that shifts its attention to the human nuances of navigating roads. A new video posted to X shows the most recent FSD build, V13.2.9, demonstrating this in a remarkable real-world scenario.
Toll Booth Magic
In the video, a Model Y running FSD pulls up to a toll booth and smoothly comes to a stop, allowing the driver to handle payment. The car waits patiently as the driver interacts with the attendant. Then, at the precise moment the toll booth operator finishes the transaction and says “Have a great day”, the vehicle starts moving, proceeding through the booth - all without any input from the driver.
If you notice, there’s no gate here at this toll booth. This interaction all happened naturally with FSD.
While the timing was perfect, the FSD wasn’t listening to the conversation for clues (maybe one day, with Grok?) The reality, as explained by Ashok Elluswamy, Tesla’s VP of AI, is even more impressive.
It can see the transaction happening using the repeater & pillar cameras. Hence FSD proceeds on its own when the transaction is complete 😎
FSD is simply using the cameras on the side of the vehicle to watch the exchange between the driver and attendant. The neural network has been trained on enough data that it can visually recognize the conclusion of a transaction - the exchange of money or a card and the hands pulling away - and understands that this is the trigger to proceed.
The Bigger Picture
This capability is far more significant than just a simple party trick. FSD is gaining the ability to perceive and navigate a world built for humans in the most human-like fashion possible.
If FSD can learn what a completed toll transaction looks like, it’s an example of the countless other complex scenarios it’ll be able to handle in the future. This same visual understanding could be applied to navigating a fast-food drive-thru, interacting with a parking garage attendant, passing through a security checkpoint, or boarding a ferry or vehicle train — all things we thought that would come much later.
These human-focused interactions will eventually become even more useful, as FSD becomes ever more confident in responding to humans on the road, like when a police officer tells a vehicle to go a certain direction, or a construction worker flags you through a site. These are real-world events that happen every day, and it isn’t surprising to see FSD picking up on the subtleties and nuances of human interaction.
This isn’t a pre-programmed feature for a specific toll booth. It is an emergent capability of the end-to-end AI neural nets. By learning from millions of videos across billions of miles, FSD is beginning to build a true contextual understanding of the world. The best part - with a 10x context increase on its way, this understanding will grow rapidly and become far more powerful.
These small, subtle moments of intelligence are the necessary steps to a truly robust autonomous system that can handle the messy, unpredictable nature of human society.